Abstract

Printable biosensors have gained numerous exciting advancements towards downstream applications in fundamental biomedical research, healthcare, food safety, environmental monitoring and governance, and to name a few. Particularly, paper-based printable biosensors have gained rising popularity in providing affordable platforms due to their merits, such as cost-effective, accurate, simple, and efficient detection of diseases for clinical diagnosis. In addition to advantages and opportunities in point-of-care detection, printable biosensors are also facing challenges. Herein, this review aims to provide a systematic summary of the development of printable biosensors, with a special focus on paper-based printable biosensors. Different types of substrates for printable biosensors are highlighted with a focus on paper substrates which have superior properties like low-cost, simple, flexible, lightweight, recyclable, etc. In addition, current printing technologies to fabricate paper-based sensors, including wax printing, photolithography, screen printing, inkjet printing, and laser printing summarize, are discussed, together with strategies for biomolecular fabrication on substrates and transducers. Finally, we also discuss the challenges and possible future perspectives, hoping to provide researchers and clinicians with informative insights into paper-based printable biosensors for smart and effective point-of-care detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.