Abstract

Abstract3D biomaterial printing requires an ink to have suitable printability characteristics, as well as creating a final construct of controllable swelling and stiffness. To tune such properties, the impact of adding different levels of chloride salts (NaCl and CaCl2) and hydroxyapatite nano‐particles (nHA) to a highly concentrated and photo‐crosslinkable methacrylated gelatin (GelMA) is investigated. By adding up to 100 mmCaCl2or 1.11mNaCl, the GelMA viscosity decreases from that of control GelMA (no salt). Interestingly, a 25G needle and strong photo‐polymerization kinetics are able to overcome the low viscosity of the 50CaG ink during printing. Adding further CaCl2increases GelMA viscosity, while decreasing both the swelling and dynamic modulus of the UV‐cured construct observed in water. As all UV‐cured constructs have a dynamic modulus greater than 1 MPa, this novel system is able to match the dynamic modulus of articular cartilage—a feat not previously reported for a GelMA‐based system. Lastly, nHA inclusion improves ink printability, as well as decreases swelling and increases dynamic modulus of the final construct. Overall, this study leads to the successful development of a new advanced functional ink which will be beneficial in the 3D printing of biomaterials toward tissue engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.