Abstract

We propose a deepening of the relativity principle according to which the invariant arena for non-quantum physics is a phase space rather than spacetime. Descriptions of particles propagating and interacting in spacetimes are constructed by observers, but different observers, separated from each other by translations, construct different spacetime projections from the invariant phase space. Nonetheless, all observers agree that interactions are local in the spacetime coordinates constructed by observers local to them. This framework, in which absolute locality is replaced by relative locality, results from deforming momentum space, just as the passage from absolute to relative simultaneity results from deforming the linear addition of velocities. Different aspects of momentum space geometry, such as its curvature, torsion and non-metricity, are reflected in different kinds of deformations of the energy-momentum conservation laws. These are in principle all measurable by appropriate experiments. We also discuss a natural set of physical hypotheses which singles out the cases of momentum space with a metric compatible connection and constant curvature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.