Abstract

PurposeThe rest-to-rest movements for a spacecraft, such as attitude adjustment and orbital manoeuver, are likely to excite residual vibration of flexible appendages, which may affect the attitude accuracy and even result in severe structural damage. The purpose of this paper is to present an approach to attenuating the vibration of flexible solar array by using reaction flywheel.Design/methodology/approachThe reaction flywheel installed on solar array served as an actuator to provide reaction torque to a structure according to a designed feedback control law. This torque can be considered as an artificial damping. Experiment on a scale model of the solar array is first performed to verify the effectiveness of this method. Numerical simulation on finite element model of a full-scale solar array is subsequently carried out to confirm the validity of this method for practical engineering application.FindingsThe vibration suppression effect on the structure using a reaction flywheel is deduced by theoretical analysis. Results from both experiment and numerical simulation reveal that the efficiency of vibration attenuation is promoted.Research limitations/implicationsImprovements on control law are left for further study. Additionally, only the first-order bending vibration of the flexible solar array is attenuated, and further study is required for other types of vibration suppression.Practical implicationsAn effective method is proposed for spacecraft designers to actively suppress the vibration of the flexible solar array.Originality/valueA novel active vibration reduction scheme is proposed using a reaction flywheel to suppress vibration of the flexible solar array. This paper fulfils a source of theoretical analysis and experimental studies for vibration reduction measure design and provides practical help for the spacecraft designers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.