Abstract

We study the evolution and power spectrum of primordial gravitational waves in the interactive Bose-Einstein gas model for dark energy, relevant, as it addresses the coincidence problem. The model is applied in the radiation, matter and dark-energy domination stages. The model introduces a scale factor associated to the radiation-matter transition which influences the gravitational spectrum. We focus on the impact of the free parameters on both the gravitational waves amplitude and its power-spectrum slope. For sets of parameters fitting Hubble's law, we show that the model's parameter for today's dark-matter energy density has a noticeable impact on such waves, while the others produce an indistinguishable effect. The feasibility of detecting such waves under present and future measurements is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.