Abstract

The present paper is devoted to extension of a number of well-known results on natural primes for prime elements in quadratic UFD. We obtain analogues of Miller's, Euler's, Lucas' and Pocklington's criterions of primality in quadratic UFD. There is proved that an analogue of the Miller–Rabin test can be realized in quadratic UFD and extended the Rabin result on probability of successful work of the Miller–Rabin test. We construct RSA-cryptosystem in quadratic domains and prove that there hold similar properties to RSA-cryptosystem on integers.

Highlights

  • An analogue of the Solovay–Strassen primality test in general quadratic Euclidean domains is obtained

  • Из предложения 2 вытекает, что a 2 можно найти с помощью бинарного алгоритма возведения в степень за O(log3|N|m) двоичных операций

  • Shortest division chains in unique factorization domains / M

Read more

Summary

Лежандра a p равным

Для любого N ∈ OK с нечетной нормой и a ∈ OK, взаимно простого с N, определяем символ. Якоби a N pk – простые числа кольца OK взаимно простых нечетного b (к∈паок лпаригаоцеимезлв оедNгaое нaи=е∈1,сие смлвчиоелрNоезв–Л оbaебж раабнтуиддмреаым∏йоnkбэ=ло1ез мнpаaеkчна тт, ькгдоселиьNмцва=оO∏лKЯnk).=к1Доpблkия, в кольце.

Пусть α
Вычислить значение символа по формуле
Список использованных источников

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.