Abstract

The third amino acid sequence of a high potential iron-sulfur protein, that of the non-sulfur purple photosynthetic bacterium Rhodopseudomonas gelatinosa, has been determined. It consists of a single polypeptide chain of 74 amino acid residues, which is slightly smaller than the high potential iron-sulfur proteins from the sulfur purple bacteria Chromatium vinosum (85 residues) and Thiocapsa pfennigii (81 residues). The sequence of the gelatinosa protein is similar to the C. vinosum and T. pfennigii proteins with 38% and 37% identically matching residues, although six gaps are proposed for the comparison (the C. vinosum and T. pfennigii proteins have 44% identically matching residues out of 73 positions compared with only one 4-residue gap). Only 17 redisues, including the 4 cystein residues essential for binding the four-iron-sulfur chromophore, are invariant in the three known sequences. A discussion of the role of conserved residues in maintenance of the three-dimensional structure and in electron transport is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.