Abstract

Transient absorption spectroscopy with a time resolution of approximately 1 ns was applied to study the decay of the primary radical pair P+H- in Rhodobacter sphaeroides R-26 reaction centers with blocked electron transfer from H- to QA. The block in the electron transfer was realized in two ways: by either reducing or removing QA. We found very different kinetics of the P+H- decay in these two cases. Convolution of the multiexponential decay with the instrument response function allowed resolution of as many as three kinetic components of <1-, 3-4-, and 9-12-ns lifetimes in chromatophores with QA reduced and in isolated reaction centers both with QA either reduced or removed (with or without o-phenanthroline) but with variable relative amplitudes. Removing QA or adding o-phenanthroline to isolated reaction centers increased the amplitude of the slowest decay phase relative to that of the fastest phase. On the basis of these observations, we propose that reaction centers adopt three conformational states characterized by different decay kinetics of P+H-. These conformational states appear to be controlled by the charges in the vicinity of the QA site as revealed by the effects of QA reduction and o-phenanthroline-mediated protonation of the sites close to QA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.