Abstract
The imposition of a wide range of operational conditions in foundry and castings processes generates, as a direct consequence, a diversity of solidification structures. It is well known that mechanical properties depend on solidification structures. The literature presents relationships between yield strength and grain size, such as the Hall-Petch’s equation, or ultimate tensile strength and dendrite arm spacing. In this work, an Al–3wt%Cu–1wt%Li alloy was solidified under upward unsteady state heat flow conditions. Heat was directionally extracted only through a water-cooled bottom made of steel (SAE 1020). The aim of the present study is to obtain correlations between the as-cast microstructure, solidification thermal variables and mechanical properties of an Al–3wt%Cu–1wt%Li alloy casting. The results include tip growth rate (V L ), cooling rate (\( \dot{T} \)), primary dendrite arm spacing (λ 1), ultimate tensile strength (σ UTS) and yield strength (σ y) as a function of solidification conditions imposed by the metal/mold system. It is found that the primary dendrite arm spacing decreases with the increase in tip growth rate and cooling rate. In both cases (σUTS and σy = 0.2 %e), the finer dendritic arrangement presents superior mechanical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.