Abstract
Alpha-tyrosinated tubulin is a cytoskeletal protein that is involved in axonal growth and is considered a marker of neuronal plasticity in adult mammals. In adult rats, unilateral ablation of the left facial sensorimotor cortical areas induces degeneration of corticotrigeminal projections and marked denervation of the contralateral sensory trigeminal nuclei. Western blotting and real-time-PCR of homogenates of the contralateral trigeminal ganglion (TG) revealed consistent overexpression of growth proteins 15 days after left decortication in comparison with the ipsilateral side. Immunohistochemical analyses indicated marked overexpression of α-tyrosinated tubulin in the cells of the ganglion on the right side. Cytoskeletal changes were primarily observed in the small ganglionic neurons. Application of HRP-CT, WGA-HRP, and HRP to infraorbital nerves on both sides 15 days after left decortication showed a significant degree of terminal sprouting and neosynaptogenesis from right primary afferents at the level of the right caudalis and interpolaris trigeminal subnuclei. These observations suggest that the adaptive response of TG neurons to central deafferentation, leading to overcrowding and rearrangement of the trigeminal primary afferent terminals on V spinal subnuclei neurons, could represent the anatomical basis for distortion of facial modalities, perceived as allodynia and hyperalgesia, despite nerve integrity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.