Abstract

We present primal-dual algorithms which give a 2.4 approximation for a class of node-weighted network design problems in planar graphs, introduced by Demaine, Hajiaghayi and Klein (ICALP’09). This class includes Node-Weighted Steiner Forest problem studied recently by Moldenhauer (ICALP’11) and other node-weighted problems in planar graphs that can be expressed using (0,1)-proper functions introduced by Goemans and Williamson. We show that these problems can be equivalently formulated as feedback vertex set problems and analyze approximation factors guaranteed by different violation oracles within the primal-dual framework developed by Goemans and Williamson.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.