Abstract

In this paper, we deal with primal-dual interior point methods for solving the linear programming problem. We present a short-step and a long-step path-following primal-dual method and derive polynomial-time bounds for both methods. The iteration bounds are as usual in the existing literature, namely $$O(\sqrt n L)$$ iterations for the short-step variant andO(nL) for the long-step variant. In the analysis of both variants, we use a new proximity measure, which is closely related to the Euclidean norm of the scaled search direction vectors. The analysis of the long-step method depends strongly on the fact that the usual search directions form a descent direction for the so-called primal-dual logarithmic barrier function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.