Abstract

We consider a two-echelon distribution system in which a supplier distributes a product to N competing retailers. The demand rate of each retailer depends on all of the retailers' prices, or alternatively, the price each retailer can charge for its product depends on the sales volumes targeted by all of the retailers. The supplier replenishes his inventory through orders (purchases, production runs) from an outside source with ample supply. From there, the goods are transferred to the retailers. Carrying costs are incurred for all inventories, while all supplier orders and transfers to the retailers incur fixed and variable costs. We first characterize the solution to the centralized system in which all retailer prices, sales quantities and the complete chain-wide replenishment strategy are determined by a single decision maker, e.g., the supplier. We then proceed with the decentralized system. Here, the supplier chooses a wholesale pricing scheme; the retailers respond to this scheme by each choosing all of his policy variables. We distinguish systematically between the case of Bertrand and Cournot competition. In the former, each retailer independently chooses his retail price as well as a replenishment strategy; in the latter, each of the retailers selects a sales target, again in combination with a replenishment strategy. Finally, the supplier responds to the retailers' choices by implementing his own cost-minimizing replenishment strategy. We construct a perfect coordination mechanism. In the case of Cournot competition, the mechanism applies a discount from a basic wholesale price, based on the sum of three discount components, which are a function of (1) annual sales volume, (2) order quantity, and (3) order frequency, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.