Abstract

In this article we consider the problem of pricing and hedging high-dimensional Asian basket options by Quasi-Monte Carlo simulations. We assume a Black–Scholes market with time-dependent volatilities, and we compute the deltas by means of the Malliavin Calculus as an extension of the procedures employed by Kohatsu-Higa and Montero (Physica A 320:548–570, 2003). Efficient path-generation algorithms, such as Linear Transformation and Principal Component Analysis, exhibit a high computational cost in a market with time-dependent volatilities. To face this challenge we then introduce a new and faster Cholesky algorithm for block matrices that makes the Linear Transformation more convenient. We also propose a new-path generation technique based on a Kronecker Product Approximation. Our procedure shows the same accuracy as the Linear Transformation used for the computation of deltas and prices in the case of correlated asset returns, while requiring a shorter computational time. All these techniques can be easily employed for stochastic volatility models based on the mixture of multi-dimensional dynamics introduced by Brigo et al. (2004a, Risk 17(5):97–101, b).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.