Abstract
Abstract: Pricing decisions of companies require an understanding of the causal effect of a price change on the demand. When real-life pricing experiments are infeasible, data-driven decision-making must be based on alternative data sources such as purchase history (sales data) and conjoint studies where a group of customers is asked to make imaginary purchases in an artificial setup. We present an approach for price optimization that combines population statistics, purchase history, and conjoint data in a systematic way. We build on the recent advances in causal inference to identify and quantify the effect of price on the purchase probability at the customer level. The identification task is a transportability problem whose solution requires a parametric assumption on the differences between the conjoint study and real purchases. The causal effect is estimated using Bayesian methods that take into account the uncertainty of the data sources. The pricing decision is made by comparing the estimated posterior distributions of gross profit for different prices. The approach is demonstrated with simulated data resembling the features of real-world data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.