Abstract

The northern pike (Esox lucius) is a selective and important predator in lake ecosystems. Prey size in pike is limited by pike gape size, which is a linear function of pike body length. Here we show that the absolute gape‐size limit in pike is greater than previously considered, and that maximum ingestible prey size is limited by prey body depth. Further, we experimentally show that pike prefer shallow‐bodied roach before deeper‐bodied common bream, and small prey sizes within each prey species. Handling time in pike increases with prey body depth, and since common bream are deeper‐bodied than roach, handling time is longer for bream than for roach of the same length, but equal considering body depth. Prey handling time is suggested to be a major cost to the pike, since it increases the risk of losing the prey, as well as exposure to predation, kleptoparasitism and cannibalism. Consequently, prey vulnerability is determined by risk of predation and intraspecific interactions, and behavioural preferences in the pike, and not by pike gape‐size limits. The consequences for natural populations is evaluated by analysing size structures of predator and prey fish populations in a eutrophic lake.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.