Abstract

ABSTRACTContaminating films on spacecraft sensitive materials surfaces in many cases consist primarily of products resulting from the interaction of atomic oxygen with silicones. Necessity of a drastic reduction of the outgassing of volatiles and the following contamination has thus become a challenging problem. The effective surface conversion of space related organosilicone materials to oxide-based protective sub-surface layers under ground-based OpenAir™ plasma pre-treatment has been researched. Oxygen plasma asher testing and complementary surface analysis techniques have been used to assess the surface composition, bounding states and atomic oxygen resistance of the treated materials. It was shown that the application of this approach may essentially simplify the technological development to reduce or prevent contamination caused by silicone-coated space materials and structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.