Abstract
Perinatal nicotine exposure drives the differentiation of alveolar lipofibroblasts (LIFs), which are critical for lung injury repair, to myofibroblasts (MYFs), which are the hallmark of chronic lung disease. Bone marrow-derived mesenchymal stem cells (BMSCs) are important players in lung injury repair; however, how these cells are affected with perinatal nicotine exposure and whether these can be preferentially driven to a lipofibroblastic phenotype are not known. We hypothesized that perinatal nicotine exposure would block offspring BMSCs lipogenic differentiation, driving these cells toward a MYF phenotype. Since peroxisome proliferator activated-receptor γ (PPARγ) agonists can prevent nicotine-induced MYF differentiation of LIFs, we further hypothesized that the modulation of PPARγ expression would inhibit nicotine's myogenic effect on BMSCs. Sprague Dawley dams were perinatally administered nicotine (1 mg/kg bodyweight) with or without the potent PPARγ agonist rosiglitazone (RGZ), both administered subcutaneously. At postnatal day 21, BMSCs were isolated and characterized morphologically, molecularly, and functionally for their lipogenic and myogenic potentials. Perinatal nicotine exposure resulted in decreased oil red O staining, triolein uptake, expression of PPARγ, and its downstream target gene adipocyte differentiation-related protein by BMSCs, but enhanced α-smooth muscle actin and fibronectin expression, and activated Wnt signaling, all features indicative of their inhibited lipogenic, but enhanced myogenic potential. Importantly, concomitant treatment with RGZ virtually blocked all of these nicotine-induced morphologic, molecular, and functional changes. Based on these data, we conclude that BMSCs can be directionally induced to differentiate into the lipofibroblastic phenotype, and PPARγ agonists can effectively block perinatal nicotine-induced MYF transdifferentiation, suggesting a possible molecular therapeutic approach to augment BMSC's lung injury/repair potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.