Abstract

IntroductionMaintaining normothermia during anesthesia is imperative to provide quality patient care and to prevent adverse outcomes. Prolonged laparoscopic procedures have been identified as a potential risk factor for hypothermia, due to continuous insufflation of cold and dry carbon dioxide. Perioperative hypothermia is associated with increased hospital cost and many complications including; impaired drug metabolism, impaired immune function, cardiac morbidity, shivering, coagulopathy.MethodsIn this experimental study, four pigs underwent four interventions each, resulting in 16 total trials. Using standardized general anesthesia in a randomized Latin-square sequence the four interventions include: 1. Control group without an administered pneumoperitoneum, 2. Administered standard pneumoperitoneum using 21°C insufflated gas and under-body forced-air warming, 3. Administered pneumoperitoneum with insufflation of warmed/humidified carbon dioxide, 4. Administered pneumoperitoneum with insufflation of warmed/humidified carbon dioxide and under-body forced-air warming. The primary outcome was distal esophageal temperature change 4 hours after trocar insertion.ResultsFour hours after trocar insertion, pigs in the control group lost 2.1 ± 0.4°C; pigs with warmed and humidified insufflation lost 1.8 ± 0.4°C; pigs with forced-air warming group lost 1.3 ± 0.9°C; and pigs exposed to a combination of warmed and humidified insufflation with forced-air warming increased by 0.3 ± 0.2°C.ConclusionThis experimental animal study provides evidence that a combination of warmed and humidified insufflation of carbon dioxide (CO2) in conjunction with forced-air warming is an effective strategy in the prevention of perioperative hypothermia. Further clinical trials investigating humans are therefore indicated.

Highlights

  • Maintaining normothermia during anesthesia is imperative to provide quality patient care and to prevent adverse outcomes

  • Perioperative hypothermia is associated with increased hospital cost and many complications including; impaired drug metabolism, impaired immune function, cardiac morbidity, shivering, coagulopathy

  • Pierre Diemunsch reported his participation in a research meeting sponsored by Fisher & Paykel in 2013. This does not alter our adherence to PLOS ONE policies on sharing data and materials. This experimental animal study provides evidence that a combination of warmed and humidified insufflation of carbon dioxide (CO2) in conjunction with forced-air warming is an effective strategy in the prevention of perioperative hypothermia

Read more

Summary

Methods

Four pigs underwent four interventions each, resulting in 16 total trials. Using standardized general anesthesia in a randomized Latin-square sequence the four interventions include: 1. Control group without an administered pneumoperitoneum, 2. Administered standard pneumoperitoneum using 21 ̊C insufflated gas and under-body forced-air warming, 3. Administered pneumoperitoneum with insufflation of warmed/humidified carbon dioxide, 4. Administered pneumoperitoneum with insufflation of warmed/humidified carbon dioxide and under-body forced-air warming. The primary outcome was distal esophageal temperature change 4 hours after trocar insertion

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.