Abstract

BackgroundThe development of bronchial hyperreactivity (BHR) subsequent to precapillary pulmonary hypertension (PHT) was prevented by acting on the major signalling pathways (endothelin, nitric oxide, vasoactive intestine peptide (VIP) and prostacyclin) involved in the control of the pulmonary vascular and bronchial tones.MethodsFive groups of rats underwent surgery to prepare an aorta-caval shunt (ACS) to induce sustained precapillary PHT for 4 weeks. During this period, no treatment was applied in one group (ACS controls), while the other groups were pretreated with VIP, iloprost, tezosentan via an intraperitoneally implemented osmotic pump, or by orally administered sildenafil. An additional group underwent sham surgery. Four weeks later, the lung responsiveness to increasing doses of an intravenous infusion of methacholine (2, 4, 8 12 and 24 μg/kg/min) was determined by using the forced oscillation technique to assess the airway resistance (Raw).ResultsBHR developed in the untreated rats, as reflected by a significant decrease in ED50, the equivalent dose of methacholine required to cause a 50% increase in Raw. All drugs tested prevented the development of BHR, iloprost being the most effective in reducing both the systolic pulmonary arterial pressure (Ppa; 28%, p = 0.035) and BHR (ED50 = 9.9 ± 1.7 vs. 43 ± 11 μg/kg in ACS control and iloprost-treated rats, respectively, p = 0.008). Significant correlations were found between the levels of Ppa and ED50 (R = -0.59, p = 0.016), indicating that mechanical interdependence is primarily responsible for the development of BHR.ConclusionsThe efficiency of such treatment demonstrates that re-establishment of the balance of constrictor/dilator mediators via various signalling pathways involved in PHT is of potential benefit for the avoidance of the development of BHR.

Highlights

  • The development of bronchial hyperreactivity (BHR) subsequent to precapillary pulmonary hypertension (PHT) was prevented by acting on the major signalling pathways (endothelin, nitric oxide, vasoactive intestine peptide (VIP) and prostacyclin) involved in the control of the pulmonary vascular and bronchial tones

  • We demonstrated that precapillary PHT leads to the development of bronchial hyperresponsiveness (BHR) to methacholine subsequent to the altered mechanical interdependence between the pulmonary vasculature and the respiratory tract

  • The results obtained in this well-validated animal model of BHR originating from precapillary PHT induced by aorta-caval shunt (ACS) preparation demonstrate that all the treatment modes studied, including the action on the VIP, PC, NO and ET-1 pathways, exhibited a beneficial profile in preventing the development of BHR

Read more

Summary

Introduction

The development of bronchial hyperreactivity (BHR) subsequent to precapillary pulmonary hypertension (PHT) was prevented by acting on the major signalling pathways (endothelin, nitric oxide, vasoactive intestine peptide (VIP) and prostacyclin) involved in the control of the pulmonary vascular and bronchial tones. These treatment strategies are based on the recognition that a key role is played in the modulation of the tone of the smooth muscle cells in the pulmonary vasculature by an imbalance between the vasoactive constrictor and proliferative mediators (endothelin-1 (ET-1), substance P and angiotensin II) and the vasorelaxing and antiproliferative mediators In the present study we set out to explore the efficiency of treatment strategies designed to prevent the adverse changes in the lung function and bronchial responsiveness by acting on the imbalance between the vasoactive constrictor-proliferative and vasorelaxing-antiproliferative mediators

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.