Abstract

Specific binding of antimicrobial peptides to titanium (Ti) surfaces may serve to prevent biofilm formation, leading to a reduction in peri-implantitis. This study evaluated the binding behavior of conjugated molecules consisting of antimicrobial and hexapeptidic Ti-binding peptides (minTBP-1) using the quartz crystal microbalance (QCM-D) technique, and investigated the effect of modification of Ti surfaces with these peptides on the bioactivity of Porphyromonas gingivalis. Four kinds of peptide were prepared: histatin 5 (DSHAKRHHGYKRKFHEKHHSHRGY), minTBP-1 + histatin 5 (RKLPDAPDSHAKRHHGYKRKFHEKHHSHRGY), lactoferricin (FQWQRNMRKVR), and minTBP-1 + lactoferricin (RKLPDAPGGFQWQRNMRKVR). The QCM-D analysis demonstrated that significantly larger increases in peptide adsorption were observed in the conjugated peptides than in antimicrobial peptides alone. In addition, ATP activity in P. gingivalis in peptide-modified specimens significantly decreased compared to that in the Ti control. These results indicate that surface modification with conjugated molecules consisting of antimicrobial and Ti-binding peptides is a promising method for reduction of biofilm formation on Ti surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.