Abstract

BackgroundFlow cytometry is commonly used to detect cell-derived extracellular vesicles in body fluids such as blood plasma. However, continuous and simultaneous illumination of multiple particles at or below the detection limit may result in the detection of a single event. This phenomenon is called swarm detection and leads to incorrect particle concentration measurements. To prevent swarm detection, sample dilution is recommended. Since the concentration of particles differs between plasma samples, finding the optimal sample dilution requires dilution series of all samples, which is unfeasible in clinical routine. ObjectivesHere we developed a practical procedure to find the optimal sample dilution of plasma for extracellular vesicle flow cytometry measurements in clinical research studies. MethodsDilution series of 5 plasma samples were measured with flow cytometry (Apogee A60-Micro), triggered on side scatter. The total particle concentration between these plasma samples ranged from 2.5 × 109 to 2.1 × 1011 mL−1. ResultsSwarm detection was absent in plasma samples when diluted ≥1.1 × 103-fold or at particle count rates <3.0 × 103 events·s-1. Application of either one of these criteria, however, resulted in insignificant particle counts in most samples. The best approach to prevent swarm detection while maintaining significant particle counts was by combining minimal dilution with maximum count rate. ConclusionTo prevent swarm detection in a series of clinical samples, the measurement count rate of a single diluted plasma sample can be used to determine the optimal dilution factor. For our samples, flow cytometer, and settings, the optimal dilution factor is ≥1.1 × 102-fold, while the count rate is <1.1 × 104 events·s−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.