Abstract

Abstract Adhesion of fibers within a spun tow, including carbon fibers and precursors, is undesirable as it may interrupt the manufacturing process and entail inferior fiber properties. In this work, softwood kraft lignin was used together with a dissolving pulp to spin carbon fiber precursors. Lignin–cellulose precursors have previously been found to be prone to fiber fusion, both post-spinning and during carbon fiber conversion. In this study, the efficiency of applying different kinds of spin finishes, with respect to rendering separable precursors and carbon fibers, has been investigated. It was found that applying a cationic surfactant, and to a similar extent a nonionic surfactant, resulted in well separated lignin–cellulose precursor tows. Furthermore, the fiber separability after carbon fiber conversion was evaluated, and notably, precursors treated with a silicone-based spin finish generated the most well-separated carbon fibers. The underlying mechanism of fiber fusion post-spinning and converted carbon fibers is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.