Abstract
Interactions in ecological communities are inherently nonlinear and can lead to complex population dynamics including irregular fluctuations induced by chaos. Chaotic population dynamics can exhibit violent oscillations with extremely small or large population abundances that might cause extinction and recurrent outbreaks, respectively. We present a simple method that can guide management efforts to prevent crashes, peaks, or any other undesirable state. At the same time, the irregularity of the dynamics can be preserved when chaos is desirable for the population. The control scheme is easy to implement because it relies on time series information only. The method is illustrated by two examples: control of crashes in the Ricker map and control of outbreaks in a stage-structured model of the flour beetle Tribolium. It turns out to be effective even with few available data and in the presence of noise, as is typical for ecological settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.