Abstract
Simple SummaryAntimicrobial resistance has been recognised as a global threat by the WHO. ESBL/AmpC genes, responsible for cephalosporin resistance, are particularly worrisome. Escherichia coli is a ubiquitous bacterium. Most strains are commensal, although some can cause disease in humans and animals. Due to its genome plasticity, it is a perfect candidate to acquire resistance genes. We hypothesized that multidrug-resistant E. coli and E. coli resistant to cephalosporins are present in the fecal microbiota of healthy horses in Quebec. We characterised antimicrobial resistance, identified ESBL/AmpC genes and assessed potential risk factors for their presence. Fecal samples from 225 horses, distributed in 32 premises, were cultured for indicator E. coli (selected without enrichment) and specific E. coli (selected after enrichment with ceftriaxone). Of the 209 healthy horses in which E. coli were detected, 46.3% shed multidrug-resistant (resistant to three or more classes of antimicrobials tested) E. coli. Non-susceptibility was most frequently observed for ampicillin, amoxicillin/clavulanic acid or streptomycin. ESBL/AmpC genes were detected in E. coli from 7.3% of horses and 18.8% of premises. The number of staff and equestrian event participation within the last three months were identified as risk factors for horses shedding multidrug-resistant E. coli isolates. The horse intestinal microbiota is a reservoir for ESBL/AmpC genes. The presence of ESBL/AmpC in horses is both a public and equine health concern, considering the close contact between horses and owners.Although antimicrobial resistance is an increasing threat in equine medicine, molecular and epidemiological data remain limited in North America. We assessed the prevalence of, and risk factors for, shedding multidrug-resistant (MDR) and extended-spectrum β-lactamase (ESBL) and/or AmpC β-lactamase-producing E. coli in healthy horses in Quebec, Canada. We collected fecal samples in 225 healthy adult horses from 32 premises. A questionnaire on facility management and horse medical history was completed for each horse. Indicator (without enrichment) and specific (following enrichment with ceftriaxone) E. coli were isolated and tested for antimicrobial susceptibility. The presence of ESBL/AmpC genes was determined by PCR. The prevalence of isolates that were non-susceptible to antimicrobials and to antimicrobial classes were estimated at the horse and the premises level. Multivariable logistic regression was used to assess potential risk factors for MDR and ESBL/AmpC isolates. The shedding of MDR E. coli was detected in 46.3% of horses. Non-susceptibility was most commonly observed to ampicillin, amoxicillin/clavulanic acid or streptomycin. ESBL/AmpC producing isolates were detected in 7.3% of horses. The most commonly identified ESBL/AmpC gene was blaCTX-M-1, although we also identified blaCMY-2. The number of staff and equestrian event participation were identified as risk factors for shedding MDR isolates. The prevalence of healthy horses harboring MDR or ESBL/AmpC genes isolates in their intestinal microbiota is noteworthy. We identified risk factors which could help to develop guidelines to preclude their spread.
Highlights
Antimicrobial resistance was reported by the World Health Organization (WHO) in 2014 as the largest current threat for global health [1]
In Europe, several studies have reported that healthy horses can carry multidrug resistant (MDR) bacteria at a relatively high prevalence (39% to 44%) [6,7] and some countries are setting up surveillance monitoring [8]
In the global approach to antimicrobial resistance recommended by the WHO, horses have been classified as companion animals, they are working animals and livestock and could contaminate their owner through direct contact, or even the general population via the food chain
Summary
Antimicrobial resistance was reported by the World Health Organization (WHO) in 2014 as the largest current threat for global health [1]. Equine medicine is involved, the first bacteria resistant to antimicrobials in horses were reported in 1971, in Canada [2]. The number of treatment failure reports due to antimicrobial resistance has increased [3,4,5]. In Europe, several studies have reported that healthy horses can carry multidrug resistant (MDR) bacteria at a relatively high prevalence (39% to 44%) [6,7] and some countries are setting up surveillance monitoring [8].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.