Abstract

BackgroundMulti-drug resistant coagulaso-negative staphylococci (CNS) have become an increasing problem in nosocomial infections connected with the presence of medical devices. The paper aimed to analyze the prevalence of antibiotic resistance in CNS isolated from invasive infection in very low birth weight (VLBW) neonates.MethodsContinuous prospective target surveillance of infections was conducted in 2009 at two Polish NICUs that participated in the Polish Neonatology Surveillance Network (PNSN). The study covered 386 neonates with VLBW (≤1500 g), among which 262 cases of invasive infection were detected with predominance of CNS (123; 47%). Altogether, 100 CNS strains were analyzed. The resistance phenotypes were determined according to EUCAST. Resistance genes: mecA, ermA, ermB, ermC, msrA, aac(6')/aph(2''), ant(4')-Ia and aph(3')-IIIa were detected using multiplex PCR.ResultsThe most common species was S. epidermidis (63%), then S. haemolyticus (28%) and other CNS (9%). Among S. epidermidis, 98% of isolates were resistant to methicillin, 90% to erythromycin, 39% to clindamycin, 95% to gentamicin, 60% to amikacin, 36% to ofloxacin, 2% to tigecycline, 3% to linezolid and 13% to teicoplanin. Among S. haemolyticus isolates, 100% were resistant to methicillin, erythromycin and gentamicin, 18% to clindamycin, 50% to amikacin, 86% to ofloxacin, 14% to tigecycline and 4% to teicoplanin. No resistance to linezolid was detected for S. haemolyticus isolates. Moreover, all isolates of S. epidermidis and S. haemolyticus were susceptible to vancomycin. The mecA gene was detected in 98% of S. epidermidis isolates and all of S. haemolyticus ones. Among macrolide resistance isolates, the ermC was most common in S. epidermidis (60%) while msrA was prevalent in S. haemolyticus (93%). The ermC gene was indicated in all isolates with cMLSB, whereas mrsA was found in isolates with MSB phenotype. Of the aminoglycoside resistance genes, aac(6')/aph(2'') were present alone in 83% of S. epidermidis, whereas aac(6')/aph(2'') with aph(3')-IIIa were predominant in 84% of S. haemolyticus.ConclusionsKnowing the epidemiology and antibiotic resistance of CNS isolated from invasive infection in VLBW neonates is a key step in developing targeted prevention strategies and reducing antibiotic consumption.

Highlights

  • Coagulase-negative staphylococci (CNS) rank among opportunistic pathogens being a frequent etiologic agent of nosocomial infections connected with the presence of medical devices

  • The species identification with the multiplex PCR indicated that 63% of the tested coagulaso-negative staphylococci (CNS) isolates belonged to S. epidermidis species, while 28% to S. haemolyticus (Figure 1)

  • Among S. epidermidis, 98% (n = 62) of isolates were resistant to methicillin, 90% (n = 57) to erythromycin, 39% (n = 25) to clindamycin, 95% (n = 60) to gentamicin, Figure 1 An example of the outcome of the multiplex PCR reaction for determining the species of Staphylococcus aureus (108 bp), Staphylococcus epidermidis (124 bp), Staphylococcus haemolyticus (271 bp) and for detecting the presence of mecA gene (154 bp)

Read more

Summary

Introduction

Coagulase-negative staphylococci (CNS) rank among opportunistic pathogens being a frequent etiologic agent of nosocomial infections connected with the presence of medical devices. The cause for this should be sought in the ability of CNS to create biofilm whereby they pose a particular threat for people with valve prostheses and the ones with implants or catheters [1]. Multi-drug resistant coagulaso-negative staphylococci (CNS) have become an increasing problem in nosocomial infections connected with the presence of medical devices. The paper aimed to analyze the prevalence of antibiotic resistance in CNS isolated from invasive infection in very low birth weight (VLBW) neonates

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.