Abstract

The study was conducted to investigate the protective effects of Salvia miltiorrhiza polysaccharides (SMPs) on lipopolysaccharides (LPS)/d-galactosamine (d-GalN)-induced liver injury in mice and its mechanism. Seventy-two mice were allocated to 6 groups of 12 each, that is, the untreated control group, the liver injury model group, the Bifendate group (Bifendate 200 mg/kg/day), and 3 SMP-treated groups at low (250 mg/kg/day), medium (500 mg/kg/day), and high doses (750 mg/kg/day). After 12 days oral treatment, liver injury was induced with LPS/d-GalN, and 1 h later the mice were sacrificed for a series of analyses. The results showed that SMPs significantly alleviated pathological changes in the hepatic tissue. Compared with the untreated control group, the messenger RNA (mRNA) levels of lipopolysaccharide-binding protein (LBP), cluster of differentiation 14 (CD14), myeloid differentiation factor 2 (MD-2), toll-like receptor 4 (TLR4), and myeloid differentiation primary response protein 88 (MyD88) detected by quantitative real-time polymerase chain reaction (qRT-PCR), the protein levels of TLR4, MyD88, phosphorylated inhibitor of nuclear factor kappa-B kinase alpha/beta (P-IKK-α/β), phosphorylated inhibitor of NF-κB alpha (P-IκB-α) and phosphorylated P65 (P-P65) detected by Western blot, the levels of C-X-C motif chemokine 10 (CXCL-10) and Intercellular Adhesion Molecule 1 (ICAM-1) detected by immunohistochemistry, and the concentrations of tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) detected by enzyme-linked immunosorbent assay of liver injury model group were increased significantly (P < 0.01). Compared with liver injury model group, the mRNA levels of LBP, CD14, MD-2, TLR4, and MyD88; protein levels of TLR4, MyD88, P-IKK-α/β, P-IκB-α, and P-P65; levels of CXCL-10 and ICAM-1; and the concentrations of TNF-α and IL-1β of SMP groups and Bifendate group were decreased significantly (P < 0.01 or P < 0.05). In conclusion, SMPs can effectively inhibit TLR4/MyD88 inflammatory signaling pathway of LPS/d-GalN-induced liver injury in mice, and it may be part of the mechanism by which SMPs relieve excessive inflammation in the liver of mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.