Abstract

In the current study, we analyze the motion of pressurized water molecules in nanopores of a well-crystallized, hydrophobic zeolite using both experiment and molecular dynamics simulation. It is discovered that, contradictory to the prediction of the classic Laplace-Young equation, the required infiltration pressure is highly dependent on the infiltration volume. A modified Laplace-Young equation is developed to take into consideration the effective solid-liquid interfacial tension, the thermal energy exchange, as well as the variation in configuration of confined liquid molecules. The last two factors are significant only when the nanopore diameter is comparable with the liquid molecule size. It is also remarkable that the infiltrated liquid molecules, when confined in the nanoenvironment, could transform from a single-chain conformation to a double-helical structure as the pressure increases, accompanied by an abrupt system free energy change that leads to different pressure-induced transport behaviors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.