Abstract

Shubnikov-de Haas and persistent photoconductivity measurements are used to study the mobility, free electron density (n) and the occupancy of the DX centre in heavily doped n-GaAs as a function of doping level and hydrostatic pressure. The results show that the DX centre produces a resonant donor level between the Γ - and L-conduction band minima at a concentration comparable with the doping level. For the Si-doped samples, comparison with local vibration mode measurements indicates that the DX level can be identified with SiGa. The level acts to pin the Fermi energy at electron concentrations around 1.8 × 1019 cm−3. Analysis of the results indicates that macroscopic charge separation is not responsible for persistent photoconductivity in these samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.