Abstract
Observations at the microcirculatory level have revealed that (a) the pressure pulse reaches the smallest vessel, and (b) the pulse wave velocity alters from a value in the order of meters/second in large arteries to a value in the order of centimeters/second in the microvessels. We investigate, herein, whether these experimental findings are consonant with linear pulse wave transmission theory in a branching system of vessels. Our computations, utilizing available data, show that this is indeed the case. For low frequency (1 Hz), cumulative attenuation is such that about one-third of the pulse, originating at the heart, reaches the capillary. A 10-Hz pulse, however, is virtually completely attenuated by the time the cpaillary is reached. Transmission time for a pulse, from heart to capillary, is also frequency dependent, with higher frequencies propagating more rapidly. Vasoconstriction, at the arteriolar level in the absence of reflection, can also strongly attenuate the pulse remnant at that site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.