Abstract
We present in situ structural investigations of a metal-containing diblock copolymer on a water surface. Monolayers of poly(vinylferrocene-b-(2-vinylpyridine)) (PVFc-b-P2VP) block copolymers are studied in a wide range of compositions by varying molar masses of P2VP with two different molecular weights of PVFc. We focus on the role of the respective block partners, PVFc and P2VP, when compressing the layer on the water surface. Compression isotherms are presented and interpreted in terms of the classical gaseous, expanded, and condensed phases. We calculate isothermal compressibilities, which reveal a minimum value independent of the molar masses of the respective block partners. We find the isotherms to be dominated by P2VP while PVFc barely contribute to the compression behavior due to its rather compact coil structure. We consider the diblock copolymer monolayers as a two-dimensional model system, which is reflected by two-dimensional scaling behavior in the semi dilute and condensed regime. By X-ray reflectometry (XR), we monitor in situ the monolayer structure change with increasing surface pressure Π and observe the PVFc-b-P2VP separation at high Π.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.