Abstract

The flow of a monatomic gas through a slit and an orifice due to an arbitrarily large pressure difference is examined on the basis of the nonlinear Bhatnagar–Gross–Krook (BGK) model equation, subject to Maxwell diffuse boundary conditions. The governing kinetic equation is discretized by a second-order control volume scheme in the physical space and the discrete velocity method in the molecular velocity space. The nonlinear fully deterministic algorithm is optimized to reduce the computational effort by introducing memory usage optimization, grid refinement and parallelization in the molecular velocity space. Results for the flow rates and the macroscopic distributions of the flow field are presented in a wide range of the Knudsen number for several pressure ratios. The effect of the various geometric and physical parameters on the flow field is examined. Comparison with previously reported corresponding Direct Simulation Monte Carlo (DSMC) results indicates a very good agreement, which clearly demonstrates the accuracy of the kinetic algorithm and furthermore the reliability of the BGK model for simulating pressure driven flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.