Abstract

ABSTRACTThe pressure effects on melting temperature and shear modulus of hcp-iron have been studied based on the semi-empirical approach in the Debye model. The recent well-established pressure-dependent Grüneisen parameter has been applied to derive the analytical expressions of the Debye frequency, the Debye temperature, melting temperature and shear modulus which are of importance to geophysical implications. Numerical calculations have been performed for hcp-iron as functions of pressure up to the pressure of Earth's inner core. Our calculations are compared with those of previous experimental and theoretical data showing the good and reasonable agreements. The present results contribute to the database of high pressure melting, especially Earth's inner core boundary temperature, and could also be used to verify as well as analyze the future high pressure diamond-anvil cell experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.