Abstract

There are many different correlative light and electron microscopy (CLEM) techniques available. The use of super-resolution microscopy in CLEM is an emerging application and while offering the obvious advantages of improved resolution in the fluorescence image, and therefore more precise correlation to electron microscopy (EM) ultrastructure, it also presents new challenges. Choice of fluorophore, method of fixation, and timing of the fluorescence imaging are critical to the success of super-resolution CLEM and the relative importance, and technical difficulty, of each of these factors depends on the type of super-resolution microscopy being employed. This chapter details the method we developed for in-resin super-resolution CLEM using single molecule localization microscopy (SMLM) with standard fluorescent proteins (e.g., GFP and mVenus). The key to this approach is being able to preserve not only the fluorescence, but also, and more importantly, the photoswitching ability of the fluorescent proteins throughout the EM sample preparation procedure. Cells are cryofixed using high pressure freezingfor optimal structural preservation and then freeze substituted in tannic acid, which preserves the photoswitching ability of the fluorescent proteins and is essential for high-quality SMLM imaging. Resin sections are then imaged using SMLM, achieving a structural resolution of 40-50nm and a localization precision of ∼17nm, followed by transmission electron microscopy. This produces high quality correlative images without the use of specialized fluorescent proteins or antibodies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.