Abstract

The generation of accurate kinetic parameters such as mean generation time Λ and effective delayed neutron fraction βeff via Monte Carlo codes is established. Employing these in downstream deterministic codes warrants another step to ensure no additional error is introduced by the low-order transport operator when computing forward and adjoint fluxes for bilinear weighting of these parameters. Another complexity stems from applying superhomogenization (SPH) equivalence in non-fundamental mode approximations, where reference and low-order calculations rely on a 3D full core model. In these cases, SPH factors can optionally be computed for only part of the geometry while preserving reaction rates and K-effective, but the impact of such approximations on kinetics parameters has not been thoroughly studied. This paper aims at studying the preservation of bilinearly-weighted quantities in the Serpent–Griffin calculation procedure. Diffusion and transport evaluations of IPEN/MB-01, Godiva, and Flattop were carried out with the Griffin reactor physics code, testing available modeling options using Serpent-generated multigroup cross sections and equivalence data. Verifying Griffin against Serpent indicates sensitivities to multigroup energy grid selection and regional application of SPH equivalence, introducing significant errors; these were demonstrated to be reduced through the use of a transport method together with a finer energy grid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.