Abstract
Approximately 10% of cases of Alzheimer's disease are familial and associated with autosomal dominant inheritance of mutations in genes encoding the amyloid precursor protein, presenilin 1 (PS1) and presenilin 2 (PS2). Mutations in PS1 are linked to about 25% of cases of early-onset familial Alzheimer's disease. PS1, which is endoproteolytically processed in vivo, is a multipass transmembrane protein and is a functional homologue of SEL-12, a Caenorhabditis elegans protein that facilitates signalling mediated by the Notch/LIN-12 family of receptors. To examine potential roles for PS1 in facilitating Notch-mediated signalling during mammalian embryogenesis, we generated mice with targeted disruptions of PS1 alleles (PS1-/- mice). PS1-/- embryos exhibited abnormal patterning of the axial skeleton and spinal ganglia, phenotypes traced to defects in somite segmentation and differentiation. Moreover, expression of mRNA encoding Notch1 and Dll1 (delta-like gene 1), a vertebrate Notch ligand, is markedly reduced in the presomitic mesoderm of PS1-/- embryos compared to controls. Hence, PS1 is required for the spatiotemporal expression of Notch1 and Dll1, which are essential for somite segmentation and maintenance of somite borders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.