Abstract

AbstractAmino‐functionalized zirconium‐based metal‐organic frameworks (MOFs) have shown unprecedented catalytic activity compared to non‐functionalized analogues for hydrolysis of organophosphonate‐based toxic chemicals. Importantly, the effect of the amino group on the catalytic activity is significantly higher in the case of UiO‐66‐NH2, where the amino groups reside near the node, compared to UiO‐67‐m‐NH2, where they are directed away from the node. Herein, we show that the proximity of the amino group is crucial for fast catalytic activity towards hydrolysis of organophosphonate‐based nerve agents. The generality of the observed amine‐proximity‐dictated catalytic activity has been tested on two different MOF systems which have different topology. DFT calculations reveal that amino groups on all the MOFs studied are not acting as Brønsted bases; instead they control the microsolvation environment at the Zr6‐node active site and therefore increase the overall catalytic rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.