Abstract

We reconstructed vegetation and fire histories from four sites located on a sandy outwash plain in northwestern Wisconsin (USA) to test whether lakes and wetlands have influenced how vegetation and fire regimes in pine–oak forests responded to late-Holocene climatic changes. Because of positive feedbacks between jack pine (Pinus banksiana Lamb.) and fire, communities with few fire breaks should be more resilient to changing climatic conditions. Pollen and charcoal from lake-sediment cores were used to reconstruct vegetation changes at 50- to 100-year intervals and forest fire history at decadal time scales for the past 2500 years. The presence of fire breaks affected both fire regimes and the response of vegetation to climatic changes. Areas with more fire breaks had smaller charcoal peaks and the vegetation was more responsive to climate changes. The vegetation in areas with few fire breaks was more resilient, maintaining higher amounts of jack pine and (or) red pine than the more protected sites. We interpret these findings as evidence that positive feedbacks between fire and jack pine forests stabilized vegetation at sites where fire breaks were absent, and that such sites may be relatively resilient to future climate changes, until jack pine is no longer able to regenerate under the regional climatic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.