Abstract

Electronegative low-density lipoprotein (LDL(-)) is a minor modified fraction of human plasma LDL with several atherogenic properties. Among them is increased bioactive lipid mediator content, such as lysophosphatidylcholine (LPC), non-esterified fatty acids (NEFA), ceramide (Cer), and sphingosine (Sph), which are related to the presence of some phospholipolytic activities, including platelet-activating factor acetylhydrolase (PAF-AH), phospholipase C (PLC), and sphingomyelinase (SMase), in LDL(-). However, these enzymes' activities do not explain the increased Sph content, which typically derives from Cer degradation. In the present study, we analyzed the putative presence of ceramidase (CDase) activity, which could explain the increased Sph content. Thin layer chromatography (TLC) and lipidomic analysis showed that Cer, Sph, and NEFA spontaneously increased in LDL(-) incubated alone at 37 °C, in contrast with native LDL(+). An inhibitor of neutral CDase prevented the formation of Sph and, in turn, increased Cer content in LDL(-). In addition, LDL(-) efficiently degraded fluorescently labeled Cer (NBD-Cer) to form Sph and NEFA. These observations defend the existence of the CDase-like activity's association with LDL(-). However, neither the proteomic analysis nor the Western blot detected the presence of an enzyme with known CDase activity. Further studies are thus warranted to define the origin of the CDase-like activity detected in LDL(-).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.