Abstract
This paper investigates concentrates on the trajectory tracking control problem of dynamic positioning (DP) ship, in the presence of the time-varying disturbance and input saturation. Firstly, a simplified mathematical model of three degrees of freedom is established. According to the characteristics of the DP ship, an adaptive backstepping controller which combine the prescribed performance function with disturbance observer is proposed. The control scheme can guarantee the transient and steady state performance of the trajectory tracking and meet the prescribed performance criteria. In addition, an auxiliary dynamic system is introduced into the controller to deal with the input saturation problem of the actuator, so that the DP ship can accomplish the task of trajectory tracking under the condition of actuator constraint. Subsequently, in combination of barrier Lyapunov function (BLF), it is proved that the DP system can stabilize and converge rapidly to the small neighborhood of the equilibrium point, which can achieve the prescribed performance. Finally, the effectiveness of the DP control law is demonstrated by a series of simulation experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Institute of Measurement and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.