Abstract
AbstractPolyolefin elastomer (POE) has very weak crystalline ability, consequently, applying the conventional preparative temperature‐rising elution fractionation (P‐TREF) to separate is challenging. Here, a unique, home‐built P‐TREF apparatus with an extensive range of temperatures from −80°C to 150°C is applied to first fractionate POE depending on its crystallizability. The main fractions are eluted at 0°C, 8°C, 15°C, 20°C, 25°C, 30°C, and 35°C. The corresponding weight percentages of fractions are 8.31, 13.38, 15.59, 12.05, 13.39, 17.30, and 10.53 wt%, respectively. The chain structures of fractions are further analyzed by high‐temperature gel permeation chromatography (HT‐GPC), 13C‐nuclear magnetic resonance spectroscopy (13C‐NMR), differential scanning calorimetry (DSC), and successive self‐nucleation and annealing (SSA). The crystallinity of the fraction grows continually as the elution temperature rises. The 1‐octene comonomer concentrations within the fractions decreases from 13.8 to 7.9 mol% when the elution temperature rises from −10°C to 40°C. These findings enable for the detailed recognition of the chain microstructure of POE resin and the extension of the TREF approach to POE resins. This lays the groundwork for fundamental studies and practical uses in industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.