Abstract

Styrene-ethylene-butylene-styrene block copolymer (SEBS)/clay nanocomposites were prepared via a melt mixing technique. Various amounts of two types of maleated compatibilizers, styrene-ethylene-butylene-styrene block copolymer grafted maleic anhydride (SEBS-g-MA) and polypropylene grafted maleic anhydride (PP-g-MA), were incorporated to improve the dispersion of commercial organoclay (denoted as 20A), respectively. PP-g-MA compatibilized system conferred higher tensile strength and tear strength (initiation condition) than SEBS-g-MA compatibilized system. At a fixed content of compatibilizers, the above mechanical properties were improved with increasing clay content as well. By relating tensile strength to tear strength (arrest condition), the average depth of flaw was in the range of 33.8 ± 3.4 μm, which successfully confirmed the extension of Rivlin and Thomas’s theory for conventional elastomers to thermoplastic elastomer/clay nanocomposites for the first time. Cutting strength of SEBS/clay nanocomposites gave an intermediate value when compared with crystalline plastics and conventional amorphous elastomers, which further signified the importance of micro-yielding of styrene domains, crystalline yielding of compatibilizer, and filler reinforcement even in the nano-fracture zone of deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.