Abstract

Nanoparticles, each consisting of one of the three molecular corrolazine (Cz) compounds, H(3)(TBP(8)Cz), Mn(III)(TBP(8)Cz), and Fe(III)(TBP(8)Cz) (TBP(8)Cz = octakis(4-tert-butylphenyl)corrolazinato), were prepared via a facile mixed-solvent technique. The corrolazine nanoparticles (MCz-NPs) were formed in H(2)O/THF (10:1) in the presence of a small amount of a polyethylene glycol derivative (TEG-ME) added as a stabilizer. This technique allows highly hydrophobic Czs to be "dissolved" in an aqueous environment as nanoparticles, which remain in solution for several months without visible precipitation. The MCz-NPs were characterized by UV-visible spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM) imaging, and shown to be spherical particles from 100-600 nm in diameter with low polydispersity indices (PDI = 0.003-0.261). Particle size is strongly dependent on Cz concentration. The H(3)Cz-NPs were adsorbed on to a modified self-assembled monolayer (SAM) surface and imaged by atomic force microscopy (AFM). Adsorption resulted in disassembly of the larger H(3)Cz-NPs to smaller H(3)Cz-NPs, whereby the resulting particle size can be controlled by the surface energy of the monolayer. The Fe(III)Cz-NPs were shown to be competent catalysts for the oxidation of cyclohexene with either PFIB or H(2)O(2) as external oxidant. The reactivity and product selectivity seen for Fe(III)Cz-NPs differs dramatically from that seen for the molecular species in organic solvents, suggesting that both the nanoparticle structure and the aqueous conditions may contribute to significant changes in the mechanism of action of the Fe(III)Cz catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.