Abstract

TiO2 hollow nanofibers have been fabricated by directly annealing electrospun polyvinylpyrrolidone (PVP)/Tetra-butyl titanate (TBT) composite nanofibers. In this approach, PVP/TBT composite fibers were first synthesized by electrospinning PVP/TBT solution, and then calcined at high temperature with an appropriate heating rate to form hollow TiO2 nanofibers. During the heat treatment, the solvent composition, the amount of TBT and the heating rate have important influences on the morphologies of the TiO2 nanofibers. Morphologies of TiO2 could be tuned from solid nanofibers to belts, hollow nanofibers and rods by controlling the appropriate preparation conditions. The crystal structure, morphology, surface composition and specific surface area of the TiO2 hollow nanofibers were investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and Brunauer–Emmett–Teller analysis, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.