Abstract
To address the challenge of abatement of volatile organic compounds (VOCs) in environmental catalysis, this study developed a temperature-gradient hydrothermal strategy to fabricate SrSn(OH)6 nanocatalysts and systematically investigatd their photocatalytic performance and mechanisms for gaseous toluene degradation. SrSn(OH)6 (SSH) was synthesized via a simple hydrothermal method with optimal preparation conditions identified as a reaction temperature of 140 °C and duration of 12 h. The crystallinity of SrSn(OH)6 was modulated by adjusting the pH of the precursor solution, yielding materials with distinct morphologies, specific surface areas, and band gaps. The narrowed band gap of SrSn(OH)6 nanocatalysts facilitated electron excitation to generate additional photogenerated electron-hole pairs. The SSH-10.5 sample with ordered planar and hole-like structures promoted carrier migration, effectively suppressed electron-hole recombination, and enhanced the conversion of abundant surface hydroxyl groups into hydroxyl radicals. Under UV irradiation, SSH-10.5 achieved a toluene degradation efficiency of 69.56% and showed excellent stability after five reuse cycles. Electron spin resonance analysis confirmed the presence of •OH and •O2− radicals in the reaction system, with •OH identified as the dominant active species. In situ FT-IR spectroscopy revealed that •OH and •O2− radicals attacked the methyl group of toluene, converting it into intermediates including benzyl alcohol, benzaldehyde, and benzoic acid. This work provides a novel design of high-efficiency VOC-photocatalytic materials and shows significant implications for advancing industrial exhaust gas purification technologies.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have