Abstract
Novel sphere-like g-C3N4/BiOI composite photocatalysts were prepared by a one-pot EG-assisted solvothermal process in the presence of reactable ionic liquid 1-butyl-3-methylimidazolium iodine ([Bmim]I). The nanostructured heterojunction was formed with g-C3N4 covering the surface of BiOI microspheres uniformly. Multiple techniques were applied to investigate the structure, morphology and photocatalytic properties of as-prepared samples. During the reactive process, the ionic liquid acted as solvent, reactant, template and dispersing agent at the same time, leading to g-C3N4 being uniformly dispersed on the sphere-like BiOI surface. Three different types of dyes rhodamine B (RhB), methylene blue (MB), methyl orange (MO) were chosen as model pollutants to evaluate the photocatalytic activity of g-C3N4/BiOI composite. The as-prepared g-C3N4/BiOI composite exhibited much higher photocatalytic activity than the pure BiOI. At the same time, colourless endocrine disrupting chemical bisphenol A (BPA) and phenols 4-chlorophenol (4-CP) were chosen to further evaluate the photocatalytic activity of g-C3N4/BiOI composite. The g-C3N4/BiOI composite also exhibited much higher photocatalytic activity than the pure BiOI, which showed a broad spectrum of photocatalytic degradation activities. The results indicated that the formed heterojunction of g-C3N4 covers the BiOI microspheres contributed to improved electron–hole separation and enhancement in photocatalytic activity. A photocatalytic mechanism of g-C3N4/BiOI composites is also proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.