Abstract

Biomorphic magnesium oxide and magnesium oxide/carbon catalysts have been synthesized via an in situ transformation technique using rice grains as a template and carbon precursor. During preparation, MgO precursors are dispersed on the surface of rice grains with the aid of the rice-cooking process, and further transformed into solid bases upon calcination. Biomorphic MgO/carbon materials are formed when calcination is performed in a nitrogen atmosphere. These particles are spindle shaped catalysts with a circumference of several millimeters. Pyrolysis at higher temperature aids in the formation of porous structures, and the resulting MgO/carbon materials display high specific surface area (>260m2/g) and more strongly basic sites. The presence of black carbon affects the catalytic behavior of MgO in the methylation of cyclopentadiene. These shaped MgO/carbon materials exhibit much higher catalytic performance than MgO at lower reaction temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.