Abstract

A cost‐effective way of fabricating lipid‐coated surface‐enhanced Raman spectroscopy (SERS) substrate having reproducible high SERS activity was proposed. Ag nanoparticle embedded in 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine (DOPC) and 1,2‐dioleoyl‐3‐trimethylammonium‐propane (DOTAP) membranes was produced by direct deposition of a 5‐nm‐thick layer of Ag onto the solid‐supported phospholipid membrane, and subsequent dissolution of the Ag nanoparticle‐embedded membrane in iso‐octane allowed easy one‐pot fabrication of DOPC‐ or DOTAP‐coated Ag nanoparticles. In particular, DOTAP produced nearly monodisperse lipid‐encapsulated Ag nanoparticles (9 nm in diameter) exhibiting reproducible high SERS activity (detecting up to 10 nM of rhodamine 6G and 0.5 μM of glutathione). In addition, the process was modified to incorporate variety of Raman active molecules (rhodamine 6G, malachite green, 4‐aminothiopheonol, 4‐mercaptopyridine) into the particle‐encapsulating lipid bilayer. The DOTAP/Raman dye‐coated Ag nanoparticles also generated high SERS activity to enable potential application of the DOTAP/Raman dye‐coated Ag nanoparticles feasible in different areas. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.