Abstract

A conductive activated charcoal plate (ACP) was prepared from a low-cost, abundant, and non-conductive charcoal. The prepared ACP was characterized using N2 adsorption/desorption isotherms, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Brunauer-Emmett-Teller (BET) surface area of the charcoal and the ACP was 0.58 m2 g−1 and 461.67 m2 g−1, respectively. The ACP was employed in textile wastewater treatment using electrosorption process. Response surface methodology (RSM) was applied to design the experiments. The decolorization efficiency of 76% at optimum conditions of voltage=450mV, pH=4, and contact time=120 min indicated that the ACP has promising potential to decolorize textile wastewater. Moreover, the results of the kinetic analyses demonstrated that wastewater treatment followed pseudo-first order kinetic model. The ACP electrode could be regenerated and reused effectively at five successive cycles of electrosorption/electrodesorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.