Abstract

The coaxial electrospinning using the regenerated silk fibroin (SF) and silk sericin (SS) aqueous solutions as the core and shell spinning dopes, respectively, was carried out to prepare regenerated SF/SS composite fibers with components and core–shell structure similar to the natural silkworm silks. It was found from the scanning electron microscope (SEM) and transmission electron microscope (TEM) results that the core dope (SF aqueous solution) flow rate (Qc) and the applied voltage (V) had some effects on the morphology of the composite fiber. With an increase in Qc, the diameter nonuniformity and eccentricity of the core fiber became serious, while the increasing V played an inverse role. In this work, the suitable Qc for the fiber formation with better electrospinnability was about 6μL/min, and the corresponding optimum V was 40kV. Moreover, the results from Raman spectra analysis, modulated differential scanning calorimetry (MDSC), thermogravimetry (TG) measurement and mechanical property test showed that, compared with the pure SF fiber, the coaxially electrospun SF/SS fiber had more β-sheet conformation, better thermostability and mechanical properties. This was probably because that SS played significant roles in dehydrating SF molecules and inducing the conformational transition of SF to β-sheet structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.